Add like
Add dislike
Add to saved papers

Activation of NADPH Oxidase by β-Glucan from Phellinus baumii (Agaricomycetes) in RAW 264.7 Cells.

Production of oxygen-derived free radicals in phagocytes is important in preventing bacterial and fungal infections. Among free radicals, superoxide anions are a typical reactive oxygen species secreted by macrophages and neutrophils. NADPH oxidase (NOX) is a key producer of superoxide anions in these cells. β-glucans from mushrooms modulate the immune system by binding with the dectin-1 receptor on macrophages. Dectin-1 functions as a pattern recognition receptor that recognizes the pathogen-associated molecular pattern of β-glucans. During dectin-1 signaling, NOX functions in the activated macrophages to produce ROS, which are critical in antimicrobial host defense. In this study, NOX activation was measured using a lucigenin chemiluminescence assay in RAW 264.7 murine macrophages treated for 1 hour with a β-glucan fraction from Phellinus baumii (BGF; 10, 100, 500, and 1000 μg/mL) in the absence or presence of phorbol 12-myristate 13-acetate (PMA) or lipopolysaccharide (LPS). NOX was activated at BGF concentrations exceeding 10 μg/mL. BGF in the presence of PMA or LPS activated the enzyme more than treatment with PMA or LPS alone. In the presence of the NOX inhibitor diphenyleneiodonium, BGF still activated NOX. When macrophages were treated with BGF and Staphylococcus aureus, bacterial viability was reduced in a concentration-dependent manner, possibly as a result of increased phagocytosis and oxygen radical production by the activated NOX. These results demonstrate that BGF is a potent stimulator of NOX in macrophages and augments macrophage-mediated phagocytosis and NOX activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app