Add like
Add dislike
Add to saved papers

Effects of Benzoapyrene on migration and invasion of lung cancer cells functioning by TNF-α.

In this study, we attempted to find out the underlying mechanism of Benzoapyrene and metastasis of lung cancer cells. We also did experiments to testify the connection between BaP and its potential target, TNF-α. Cell median lethal dose (IC50 ) of both cells was measured by crystal violet method. Quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot were employed to detect the expression of TNF-α. Wound healing assay and transwell assay were utilized to testify the impacts of BaP and TNF-α on the metastasis of lung cancer cells. Cell death rate was elevated with the increase of BaP concentration. BaP increased the number of metastatic cells of lung cancer. The expressions of TNF-α pathway-associated protein (TNF-α, NF-kB [P65], Caspase3, and Caspase8) were enhanced by overexpressed BaP. TNF-α shRNA suppressed the positive effects of BaP on migration and invasion of lung cancer cells. Our study validated the positive effects of BaP on the metastasis of lung cancer cells. We also revealed the instrumental role of TNF-α in helping the development of lung cancer cells induced by BaP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app