Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tributyltin induces epigenetic changes and decreases the expression of nuclear respiratory factor-1.

Tributyltin (TBT), a common organotin environmental pollutant, has been widely used as a component of marine antifouling paints. We previously reported that exposure to TBT inhibits the expression and DNA binding of nuclear respiratory factor-1 (NRF-1) and causes neurotoxicity. In the present study, we focused on the epigenetic effects of TBT and investigated whether TBT decreases NRF-1 expression via epigenetic modifications in SH-SY5Y human neuroblastoma cells. First, we found that exposure to 300 nM TBT decreases NRF-1 expression. We examined epigenetic changes induced by TBT, and showed that TBT causes hypermethylation of the NRF-1 promoter region, increases the amount of methyl-CpG-binding protein 2 (MeCP2) bound to the NRF-1 promoter, and alters the expression of DNA methyltransferases and ten-eleven translocation (TET) demethylation enzymes. These results suggest that epigenetic changes play an important role in regulation of NRF-1 expression. Next, we investigated effect of NRF-1 expression decrease on cells, and TBT reduces mitochondrial membrane potential and overexpression of NRF-1 rescued this reduction in membrane potential. Thus, we suggested that NRF-1 is important for maintaining mitochondrial membrane potential. Our study indicates that TBT causes epigenetic changes such as hypermethylation, which increases recruitment of MeCP2 to the NRF-1 promoter and probably lead to decreased of NRF-1 expression and mitochondrial membrane potential. Therefore, this research provides new evidence of the epigenetic action caused by organotin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app