Add like
Add dislike
Add to saved papers

Laser-Capture Microdissection for Layer-Specific Analysis of Enteric Ganglia.

The enteric nervous system (ENS) is the division of the autonomic nervous system that innervates the gastrointestinal (GI) tract and controls central intestinal functions such as peristalsis and fluid movement. Enteric nerve cell bodies (neurons and glia) are predominantly organized in ganglionated networks that are present along the entire length of the GI tract in multiple tissue layers. Most cell bodies are organized in the myenteric plexus allocated between the longitudinal and the circular muscle layers or in the submucosal plexus between muscle tissue and mucosa. The site-specific characteristics of these enteric nerve cells have traditionally been analyzed via imaging techniques. Laser-capture microdissection (LCM) offers the prospect of site-specifically analyzing the gene expression profiles of these different subpopulations. This protocol addresses critical aspects of handling intestinal tissue for ENS dissection, such as the optimal quick-staining procedure, suitable laser settings, and limits of tissue material required to successfully dissect and analyze tissue layers for gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app