Add like
Add dislike
Add to saved papers

Dietary Chromium Picolinate Supplementation Affects Growth, Whole-Body Composition, and Gene Expression Related to Glucose Metabolism and Lipogenesis in Juvenile Blunt Snout Bream, Megalobrama amblycephala.

An 11-week feeding trial was carried out to investigate the effects of supplemented chromium picolinate (Cr-Pic) on the growth, whole-body composition, and relative mRNA expression related to lipogenesis and glucose metabolism in juvenile blunt snout bream. Seven isonitrogenous and isoenergetic diets with graded Cr supplementation levels were fed to triplicate groups. The final weight (FW), feed conversion ratio (FCR), and specific growth rate (SGR) were improved with increasing dietary Cr supplementation levels up to 0.4 mg/kg, and thereafter showed relatively constant. However, 12.0 mg/kg dietary Cr supplementation decreased growth and feed utilization. Based on SGR and FCR, the optimal dietary Cr supplementation level for the juvenile was estimated to be 0.28 mg/kg. Significantly higher plasma insulin levels were found in juvenile fed diets with 0.4 and 0.8 mg/kg Cr supplementation compared to those fed diet sans supplemented Cr. Plasma glucose levels decreased with increasing dietary Cr supplementation, and the lowest value was remarked in the group added 3.2 mg/kg of Cr. Adding 0.4-0.8 mg/kg Cr enhanced insulin receptor substrate 1 (IRS-1), phosphoinositide-3-kinase (PI3K), and pyruvate kinase (PK) and inhibited expression of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), and glycogen synthase (GS) mRNA levels. High dietary Cr (12.0 mg/kg) supplementation resulted in high G6Pase and PEPCK expression. The highest content of whole-body lipid was remarked in fish fed with 0.4 mg/kg dietary Cr, which related to the enhanced gene expression related to lipogenesis; thereafter, mRNA levels showed a diminishing trend. These findings indicate that optimum dietary Cr-Pic supplementation has a positive effect on growth and blood glucose homeostasis by modifying the mRNA levels related to glucose metabolism and lipogenesis in juvenile blunt snout bream.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app