Add like
Add dislike
Add to saved papers

Increased Curie Temperature Induced by Orbital Ordering in La 0.67 Sr 0.33 MnO 3 /BaTiO 3 Superlattices.

Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO3 layers between La0.67 Sr0.33 MnO3 layers effectively enhances ferromagnetic order and increases the Curie temperature of La0.67 Sr0.33 MnO3 /BaTiO3 superlattices. The preferential orbital occupancy of eg (x 2 -y 2 ) in La0.67 Sr0.33 MnO3 layers induced by the tensile strain of BaTiO3 layers is identified by X-ray linear dichroism measurements. Our results reveal that controlling orbital ordering can effectively improve the Curie temperature of La0.67 Sr0.33 MnO3 films and that in-plane orbital occupancy is beneficial to the double exchange ferromagnetic coupling of thin-film samples. These findings create new opportunities for the design and control of magnetism in artificial structures and pave the way to a variety of novel magnetoelectronic applications that operate far above room temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app