Add like
Add dislike
Add to saved papers

Superstructure Ta2O5 mesocrystals derived from (NH4)2Ta2O3F6 mesocrystals with efficient photocatalytic activity.

Superstructured mesocrystalline Ta2O5 nanosheets were successfully prepared from mesocrystalline (NH4)2Ta2O3F6 nanorods by the annealing method for the first time. The as-prepared mesocrystalline Ta2O5 nanosheets in this work showed remarkable visible light absorption, mainly due to the formation of oxygen vacancy defects in the mesocrystalline Ta2O5 nanosheets, which was also confirmed by XPS spectra, Raman spectra and EPR spectra. Besides, the mesocrystalline Ta2O5 nanosheets showed a highly enhanced photocatalytic activity of 11 268.24 μmol g-1 h-1, about 3.95 times that of commercial Ta2O5. Moreover, the specific surface area of the mesocrystalline Ta2O5-800 nanosheets was 16.34 m2 g-1, about 5.32 times that of the commercial Ta2O5 (3.072 m2 g-1). The valence band XPS spectra indicated a strong oxidizing ability of the mesocrystalline Ta2O5 nanosheets in comparison to that of commercial Ta2O5. The formation of superstructured Ta2O5 mesocrystals generated long lifetime carriers and effective conduction pathways, which greatly enhanced the photocatalytic activity for hydrogen production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app