JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential.

Scientific Reports 2018 January 18
Afforestation is an important approach to mitigate global warming. Its complex interactions with the climate system, however, makes it controversial. Afforestation is expected to be effective in the tropics where biogeochemical and biogeophysical effects act in concert; however, its potential in the large semi-arid regions remains insufficiently explored. Here, we use a Global Climate Model to provide a process-based demonstration that implementing measured characteristics of a successful semi-arid afforestation system (2000 ha, ~300 mm mean annual precipitation) over large areas (~200 million ha) of similar precipitation levels in the Sahel and North Australia leads to the weakening and shifting of regional low-level jets, enhancing moisture penetration and precipitation (+0.8 ± 0.1 mm d-1 over the Sahel and +0.4 ± 0.1 mm d-1 over North Australia), influencing areas larger than the original afforestation. These effects are associated with increasing root depth and surface roughness and with decreasing albedo. This results in enhanced evapotranspiration, surface cooling and the modification of the latitudinal temperature gradient. It is estimated that the carbon sequestration potential of such large-scale semi-arid afforestation can be on the order of ~10% of the global carbon sink of the land biosphere and would overwhelm any biogeophysical warming effects within ~6 years.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app