JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Computational trans-omics approach characterised methylomic and transcriptomic involvements and identified novel therapeutic targets for chemoresistance in gastrointestinal cancer stem cells.

Scientific Reports 2018 January 18
We investigated the relationship between methylomic [5-methylation on deoxycytosine to form 5-methylcytosine (5mC)] and transcriptomic information in response to chemotherapeutic 5-fluorouracil (5-FU) exposure and cisplatin (CDDP) administration using the ornithine decarboxylase (ODC) degron-positive cancer stem cell model of gastrointestinal tumour. The quantification of 5mC methylation revealed various alterations in the size distribution and intensity of genomic loci for each patient. To summarise these alterations, we transformed all large volume data into a smooth function and treated the area as a representative value of 5mC methylation. The present computational approach made the methylomic data more accessible to each transcriptional unit and allowed to identify candidate genes, including the tumour necrosis factor receptor-associated factor 4 (TRAF4), as novel therapeutic targets with a strong response to anti-tumour agents, such as 5-FU and CDDP, and whose significance has been confirmed in a mouse model in vivo. The present study showed that 5mC methylation levels are inversely correlated with gene expression in a chemotherapy-resistant stem cell model of gastrointestinal cancer. This mathematical method can be used to simultaneously quantify and identify chemoresistant potential targets in gastrointestinal cancer stem cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app