Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

∆133p53 isoform promotes tumour invasion and metastasis via interleukin-6 activation of JAK-STAT and RhoA-ROCK signalling.

Nature Communications 2018 January 18
∆122p53 mice (a model of ∆133p53 isoform) are tumour-prone, have extensive inflammation and elevated serum IL-6. To investigate the role of IL-6 we crossed ∆122p53 mice with IL-6 null mice. Here we show that loss of IL-6 reduced JAK-STAT signalling, tumour incidence and metastasis. We also show that ∆122p53 activates RhoA-ROCK signalling leading to tumour cell invasion, which is IL-6-dependent and can be reduced by inhibition of JAK-STAT and RhoA-ROCK pathways. Similarly, we show that Δ133p53 activates these pathways, resulting in invasive and migratory phenotypes in colorectal cancer cells. Gene expression analysis of colorectal tumours showed enrichment of GPCR signalling associated with ∆133TP53 mRNA. Patients with elevated ∆133TP53 mRNA levels had a shorter disease-free survival. Our results suggest that ∆133p53 promotes tumour invasion by activation of the JAK-STAT and RhoA-ROCK pathways, and that patients whose tumours have high ∆133TP53 may benefit from therapies targeting these pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app