JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Behavioural tactic predicts preoptic-hypothalamic gene expression more strongly than developmental morph in fish with alternative reproductive tactics.

Reproductive success relies on the coordination of social behaviours, such as territory defence, courtship and mating. Species with extreme variation in reproductive tactics are useful models for identifying the neural mechanisms underlying social behaviour plasticity. The plainfin midshipman ( Porichthys notatus ) is a teleost fish with two male reproductive morphs that follow widely divergent developmental trajectories and display alternative reproductive tactics (ARTs). Type I males defend territories, court females and provide paternal care, but will resort to cuckoldry if they cannot maintain a territory. Type II males reproduce only through cuckoldry. We sought to disentangle gene expression patterns underlying behavioural tactic, in this case ARTs, from those solely reflective of developmental morph. Using RNA-sequencing, we investigated differential transcript expression in the preoptic area-anterior hypothalamus (POA-AH) of courting type I males, cuckolding type I males and cuckolding type II males. Unexpectedly, POA-AH differential expression was more strongly coupled to behavioural tactic than morph. This included a suite of transcripts implicated in hormonal regulation of vertebrate social behaviour. Our results reveal that divergent expression patterns in a conserved neuroendocrine centre known to regulate social-reproductive behaviours across vertebrate lineages may be uncoupled from developmental history to enable plasticity in the performance of reproductive tactics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app