Add like
Add dislike
Add to saved papers

Modelling the water-plant cuticular polymer matrix membrane partitioning of diverse chemicals in multiple plant species using the support vector machine-based QSAR approach.

In this study, a support vector machine (SVM) based multi-species QSAR (quantitative structure-activity relationship) model was developed for predicting the water-plant cuticular polymer matrix membrane (MX) partition coefficient, KMXw of diverse chemicals using two simple molecular descriptors derived from the chemical structures and following the OECD guidelines. Accordingly, the Lycopersicon esculentum Mill. data were used to construct the QSAR model that was externally validated using three other plant species data. The diversity in chemical structures and end-points were verified using the Tanimoto similarity index and Kruskal-Wallis statistics. The predictive power of the developed QSAR model was tested through rigorous validation, deriving a wide series of statistical checks. The MLOGP was the most influential descriptor identified by the model. The model yielded a correlation (r2 ) of 0.966 and 0.965 in the training and test data arrays. The developed QSAR model also performed well in another three plant species (r2 > 0.955). The results suggest the appropriateness of the developed model to reliably predict the plant chemical interactions in multiple plant species and it can be a useful tool in screening the new chemical for environmental risk assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app