Add like
Add dislike
Add to saved papers

Functional Analyses of RUNX3 and CaMKIINα in Ovarian Cancer Cell Lines Reveal Tumor-Suppressive Functions for CaMKIINα and Dichotomous Roles for RUNX3 Transcript Variants.

(1) Background: Epithelial ovarian cancer (EOC) is the most lethal cancer of the female reproductive system. In an earlier study, we identified multiple genes as hypermethylated in tumors of patients with poor prognosis. The most promising combination of markers to predict a patient's outcome was CaMKIINα and RUNX3 . Aim of this study was to functionally validate the importance of both genes. (2) Methods: IC50 measurements, cell cycle distribution-, proliferation, and migration experiments were conducted after transgene overexpression in two EOC cell lines. (3) Results: We showed that CaMKIINα has tumor suppressive functions in vitro and reduces proliferation, migration, and colony formation. However, it had no effect on the reversion of the resistance to cisplatin. RUNX3 exhibited dualistic functions related to cisplatin sensitivity and migration capacity, depending on the respective transcript variant (TV). A2780 cells expressing RUNX3 TV2-the promoter of which harbors a CpG (5'-C-phosphate-G-3') island and is potentially inactivated by hypermethylation-exhibited increased cisplatin sensitivity and reduced migration properties. However, RUNX3 TV1, not affected by CpG island methylation could be characterized as mediating resistance and enhancing migration in A2780. The higher resistance of RUNX3 TV1 transfected cells correlates with a reduction of cell proliferation. Moreover, RUNX3 TV1 expressing cells exhibit a reduced cell cycle arrest at the gap-2 or mitosis phase (G2/M) under cisplatin treatment comparable to resistant A2780 subcultures. (4) Conclusion: It appears that CaMKIINα and RUNX3 TV2 can reduce the malignant potential of EOC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app