Add like
Add dislike
Add to saved papers

Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries.

Materials 2018 January 16
Serving as conductive matrix and stress buffer, the carbon matrix plays a pivotal role in enabling red phosphorus to be a promising anode material for high capacity lithium ion batteries and sodium ion batteries. In this paper, nitrogen-doping is proved to effective enhance the interface interaction between carbon and red phosphorus. In detail, the adsorption energy between phosphorus atoms and oxygen-containing functional groups on the carbon is significantly reduced by nitrogen doping, as verified by X-ray photoelectron spectroscopy. The adsorption mechanisms are further revealed on the basis of DFT (the first density functional theory) calculations. The RPNC (red phosphorus/nitrogen-doped carbon composite) material shows higher cycling stability and higher capacity than that of RPC (red phosphorus/carbon composite) anode. After 100 cycles, the RPNC still keeps discharge capacity of 1453 mAh g-1 at the current density of 300 mA g-1 (the discharge capacity of RPC after 100 cycles is 1348 mAh g-1). Even at 1200 mA g-1, the RPNC composite still delivers a capacity of 1178 mAh g-1. This work provides insight information about the interface interactions between composite materials, as well as new technology develops high performance phosphorus based anode materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app