Add like
Add dislike
Add to saved papers

The Role of Autophagy in the Degradation of Misfolded HLA-B27 Heavy Chains.

OBJECTIVE: To determine whether autophagy is involved in the degradation of misfolded HLA-B27 in experimental spondyloarthritis.

METHODS: Bone marrow-derived macrophages from HLA-B27/human β2 -microglobulin (hβ2 m)-transgenic rats were incubated in the presence or absence of interferon-γ and proteasome or autophagy inhibitors. Immunoprecipitation, immunoblotting, and immunofluorescence analysis were used to measure HLA-B27 heavy chains and autophagy. Autophagy was induced using rapamycin. Macrophages from HLA-B7/hβ2 m-transgenic and wild-type rats were used as controls.

RESULTS: HLA-B27-expressing macrophages showed phosphatidylethanolamine-conjugated microtubule-associated protein 1 light chain 3B levels similar to those in both control groups, before and after manipulation of autophagy. Blocking autophagic flux with bafilomycin resulted in the accumulation of misfolded HLA-B27 dimers and oligomers as well as monomers, which was comparable with the results of blocking endoplasmic reticulum-associated degradation (ERAD) with the proteasome inhibitor bortezomib. HLA-B7 monomers also accumulated after blocking each degradation pathway. The ubiquitin-to-heavy chain ratio was 2-3-fold lower for HLA-B27 than for HLA-B7. Activation of autophagy with rapamycin rapidly eliminated ~50% of misfolded HLA-B27, while folded HLA-B27 or HLA-B7 monomeric heavy chains were minimally affected.

CONCLUSION: This study is the first to demonstrate that both autophagy and ERAD play roles in the elimination of excess HLA class I heavy chains expressed in transgenic rats. We observed no evidence that HLA-B27 expression modulated the autophagy pathway. Our results suggest that impaired ubiquitination of HLA-B27 may play a role in the accumulation of misfolded disulfide-linked dimers, the elimination of which can be enhanced by activation of autophagy. Manipulation of the autophagy pathway should be further investigated as a potential therapeutic target in spondyloarthritis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app