Add like
Add dislike
Add to saved papers

Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces.

The interfacial thermal resistance determines condensation-evaporation processes and thermal transport across material-fluid interfaces. Despite its importance in transport processes, the interfacial structure responsible for the thermal resistance is still unknown. By combining nonequilibrium molecular dynamics simulations and interfacial analyses that remove the interfacial thermal fluctuations we show that the thermal resistance of liquid-vapor interfaces is connected to a low density fluid layer that is adsorbed at the liquid surface. This thermal resistance layer (TRL) defines the boundary where the thermal transport mechanism changes from that of gases (ballistic) to that characteristic of dense liquids, dominated by frequent particle collisions involving very short mean free paths. We show that the thermal conductance is proportional to the number of atoms adsorbed in the TRL, and hence we explain the structural origin of the thermal resistance in liquid-vapor interfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app