Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PokMT1 from the Polyketomycin Biosynthetic Machinery of Streptomyces diastatochromogenes Tü6028 Belongs to the Emerging Family of C-Methyltransferases That Act on CoA-Activated Aromatic Substrates.

Biochemistry 2018 Februrary 14
Recent biochemical characterizations of the MdpB2 CoA ligase and MdpB1 C-methyltransferase (C-MT) from the maduropeptin (MDP, 2) biosynthetic machinery revealed unusual pathway logic involving C-methylation occurring on a CoA-activated aromatic substrate. Here we confirmed this pathway logic for the biosynthesis of polyketomycin (POK, 3). Biochemical characterization unambiguously established that PokM3 and PokMT1 catalyze the sequential conversion of 6-methylsalicylic acid (6-MSA, 4) to form 3,6-dimethylsalicylyl-CoA (3,6-DMSA-CoA, 6), which serves as the direct precursor for the 3,6-dimethylsalicylic acid (3,6-DMSA) moiety in the biosynthesis of 3. PokMT1 catalyzes the C-methylation of 6-methylsalicylyl-CoA (6-MSA-CoA, 5) with a kcat of 1.9 min-1 and a Km of 2.2 ± 0.1 μM, representing the most proficient C-MT characterized to date. Bioinformatics analysis of MTs from natural product biosynthetic machineries demonstrated that PokMT1 and MdpB1 belong to a phylogenetic clade of C-MTs that preferably act on aromatic acids. Significantly, this clade includes the structurally characterized enzyme SibL, which catalyzes C-methylation of 3-hydroxykynurenine in its free acid form, using two conserved tyrosine residues for catalysis. A homology model and site-directed mutagenesis suggested that PokMT1 also employs this unusual arrangement of tyrosine residues to coordinate C-methylation but revealed a large cavity capable of accommodating the CoA moiety tethered to 5. CoA activation of the aromatic acid substrate may represent a general strategy that could be exploited to improve catalytic efficiency. This study sets the stage to further investigate and exploit the catalytic utility of this emerging family of C-MTs in biocatalysis and synthetic biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app