Add like
Add dislike
Add to saved papers

Recombinant collagen scaffolds as substrates for human neural stem/progenitor cells.

Adhesion to the microenvironment profoundly affects stem cell functions, including proliferation and differentiation, and understanding the interaction of stem cells with the microenvironment is important for controlling their behavior. In this study, we investigated the effects of the integrin binding epitopes GFOGER and IKVAV (natively present in collagen I and laminin, respectively) on human neural stem/progenitor cells (hNSPCs). To test the specificity of these epitopes, GFOGER or IKVAV were placed within the context of recombinant triple-helical collagen III engineered to be devoid of native integrin binding sites. HNSPCs adhered to collagen that presented GFOGER as the sole integrin-binding site, but not to IKVAV-containing collagen. For the GFOGER-containing collagens, antibodies against the β1 integrin subunit prevented cellular adhesion, antibodies against the α1 subunit reduced cell adhesion, and antibodies against α2 or α3 subunits had no significant effect. These results indicate that hNSPCs primarily interact with GFOGER through the α1β1 integrin heterodimer. These GFOGER-presenting collagen variants also supported differentiation of hNSPCs into neurons and astrocytes. Our findings show, for the first time, that hNSPCs can bind to the GFOGER sequence, and they provide motivation to develop hydrogels formed from recombinant collagen variants as a cell delivery scaffold. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app