Add like
Add dislike
Add to saved papers

The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell.

Oncotarget 2017 December 20
Chemotherapy is one of the main approach for ovarian cancer. Cancer stem cells (CSCs) escape chemotherapy and lead to chemoresistance. We previously demonstrated that cordycepin (Cd) inhibited metastasis in human ovarian carcinoma cells, the aim of this study is to investigate the effects of Cd on ovarian cancer stemness. TGF-beta was used to induce chemoresistance of chemotherapeutic agent cisplatin in SKOV-3 ovarian cancer cells. After treating with 100 μM of Cd, cell viability, the percentage of cancer stem cells, and the levels of matrix metalloproteinases (MMPs) were decreased in TGF-beta-induced SKOV-3 cells. Treatment of Cd recovered E-cadherin levels and inhibited vimentin levels while TGF-beta treatment significantly increased the expression of vimentin and PGC-1alpha, and decreased E-cadherin levels in SKOV-3 cells, indicating that the action of Cd on cancer stemness may contribute to the regulation of epithelial-mesenchymal transition (EMT). Cd efficiently attenuated chemoresistance caused by TGF-beta in SKOV-3 cancer stem cells to promote the cytotoxicity of cisplatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app