Add like
Add dislike
Add to saved papers

One-step production of C6-C8 carboxylates by mixed culture solely grown on CO.

Background: This study aimed at producing C6-C8 medium-chain carboxylates (MCCAs) directly from gaseous CO using mixed culture. The yield and C2-C8 product composition were investigated when CO was continuously fed with gradually increasing partial pressure.

Results: The maximal concentrations of n -caproate, n -heptylate, and n -caprylate were 1.892, 1.635, and 1.033 mmol L-1 , which were achieved at the maximal production rates of 0.276, 0.442, and 0.112 mmol L-1 day-1 , respectively. Microbial analysis revealed that long-term acclimation and high CO partial pressure were important to establish a CO-tolerant and CO-utilizing chain-elongating microbiome, rich in Acinetobacter , Alcaligenes, and Rhodobacteraceae and capable of forming MCCAs solely from CO.

Conclusions: These results demonstrated that carboxylate and syngas platform could be integrated in a shared growth vessel, and could be a promising one-step technique to convert gaseous syngas to preferable liquid biochemicals, thereby avoiding the necessity to coordinate syngas fermentation to short-chain carboxylates and short-to-medium-chain elongation. Thus, this method could provide an alternative solution for the utilization of waste-derived syngas and expand the resource of promising biofuels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app