JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Universal Transient Dynamics of Electrowetting Droplets.

Scientific Reports 2018 January 17
Droplet spreading on substrates by electrowetting exhibits either of the two transient behaviours: one characterised by contact line oscillation, and the other one by slow spreading dynamics. The transition between these behaviours remains elusive due to the current limited understanding of the spreading dynamics on the hydrodynamical and electrical properties of electrowetting systems. To understand this transition we propose a model capturing the transition's occurrence based on both the hydrodynamical and electrical parameters. We derive the critical viscosity at which the transition occurs and reveal its subtle and often hidden dependence on the electrowetting dynamics. We find and experimentally verify that the condition for minimization of droplets' actuation time is only achieved at the transition. Particularly, the transition time as a function of damping ratio exhibits the general feature of Kramers' reaction-rate theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app