Add like
Add dislike
Add to saved papers

Wnt5a mediates chronic post-thoracotomy pain by regulating non-canonical pathways, nerve regeneration, and inflammation in rats.

As well-characterized ligands involved in neurogenesis, Wnts are emerging as promising targets in pain pathogenesis. Our previous pilot study showed that intrathecal inhibition of Wnt5a, but not Wnts, relieves chronic post-thoracotomy pain (CPTP) in rats. In the present study, we aimed to further explore the regulatory mechanism of Wnt5a in CPTP development. Increased protein levels of Wnt5a, transmembrane receptor Ror2, and activated non-canonical Wnt pathway members were found in the thoracic dorsal root ganglions from postoperative day (POD) 7 to POD 21. However, the levels of canonical Wnt pathway members showed no change by reverse transcriptase-PCR. In addition, elevated nerve regeneration, activated pro-inflammatory factors, and glial cells were detected from POD 7 to POD 21. Furthermore, intrathecal Wnt5a blockade during the early phase (POD 0 to POD 9) significantly increased the pain threshold, and intervention in the late phase (POD 14 to POD 16) alleviated pain; however, the analgesic response was not as effective as that in the early phase. Additionally, early but not late Wnt5a blockade significantly reversed CPTP-induced activation of the non-canonical Wnt pathways, nerve regeneration, and inflammation. In contrast, a Wnt5a agonist decreased the pain threshold in both naïve and painless rats. These results suggest that Wnt5a promotes the development of CPTP by activating non-canonical Wnt pathways, nerve regeneration, and inflammation. Therapeutic intervention by targeting Wnt5a may represent an effective strategy for preventing and treating CPTP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app