JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Dynamic Epigenetic Changes during Plant Regeneration.

Plants have the remarkable ability to drive cellular dedifferentiation and regeneration. Changes in epigenetic landscapes accompany the cell fate transition. Notably, modifications of chromatin structure occur primarily during callus formation via an in vitro tissue culture process and, thus, pluripotent callus cells have unique epigenetic signatures. Here, we highlight the latest progress in epigenetic regulation of callus formation in plants, which addresses fundamental questions related to cell fate changes and pluripotency establishment. Global and local modifications of chromatin structure underlie callus formation, and the combination and sequence of epigenetic modifications further shape intricate cell fate changes. This review illustrates how a series of chromatin marks change dynamically during callus formation and their biological relevance in plant regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app