Add like
Add dislike
Add to saved papers

The Starch Utilization System Assembles around Stationary Starch-Binding Proteins.

Biophysical Journal 2018 July 18
Bacteroides thetaiotaomicron (Bt) is a prominent member of the human gut microbiota with an extensive capacity for glycan harvest. This bacterium expresses a five-protein complex in the outer membrane, called the starch utilization system (Sus), which binds, degrades, and imports starch into the cell. Sus is a model system for the many glycan-targeting polysaccharide utilization loci found in Bt and other members of the Bacteroidetes phylum. Our previous work has shown that SusG, a lipidated amylase in the outer membrane, explores the entire cell surface but diffuses more slowly as it interacts with starch. Here, we use a combination of single-molecule tracking, super-resolution imaging, reverse genetics, and proteomics to show that SusE and SusF, two proteins that bind starch, are immobile on the cell surface even when other members of the system are knocked out and under multiple different growth conditions. This observation suggests a new paradigm for protein complex formation: binding proteins form immobile complexes that transiently associate with a mobile enzyme partner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app