Add like
Add dislike
Add to saved papers

Enhanced solubility, oral bioavailability and anti-osteoporotic effects of raloxifene HCl in ovariectomized rats by Igepal CO-890 nanomicelles.

The purpose of the present study was to enhance the bioavailability and anti-osteoporotic effects of raloxifene HCl (RH) by increasing its solubility and inhibition of the p-glycoprotein pump using surfactant micelles of Igepal CO-890. The micelles were prepared by the direct method and their critical micellar concentration, drug dissolution rate, saturated solubility, drug loading and surface morphology were defined. The cytotoxicity of Igepal CO-890 and its ability to inhibit the p-glycoprotein pump were studied on Caco-2 cells. The pharmacokinetic parameters were analyzed by oral administration of a single dose of 15 mg/kg in Wistar rats. Anti-osteoporotic effects were studied by measuring the calcium, phosphorous, and uterus weight of rats after one month of oral administration of 6 mg/kg/day of RH in ovariectomized rats. Igepal CO-890 micelles enhanced the RH solubility by about two-fold. The FT-IR and DSC studies indicated no interaction between the drug and the surfactant. XRD spectrum showed an amorphous state of RH in the micelles. The p-glycoprotein pump was inhibited by Igepal CO-890 in Caco-2 cells comparable to verapamil. Micelles increased the uterine weight and decreased the serum calcium and phosphorus significantly compared to the untreated drug. Oral bioavailability of RH increased about four-fold by nanomicelles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app