Add like
Add dislike
Add to saved papers

Evaluation of the Giant Ferromagnetic π-d Interaction in Iron-Phthalocyanine Molecule.

The interaction between itinerant π and localized d electrons in metal-phthalocyanines, namely, Jπd interaction, is considered as responsible for the giant negative magnetoresistance observed in several phthalocyanine-based conductors, among many other important physical properties. Despite the fundamental and technological importance of this on-site intramolecular interaction, its giant ferromagnetic nature has been only recently demonstrated by the experiments conducted by Murakawa et al. in the neutral radical [Fe(Pc)(CN)2 ]·2CHCl3 ( Phys. Rev. B 2015 , 92 , 054429 ). In this article, we present the theoretical evaluation of this interaction combining wave function-based electronic calculations on isolated Fe(Pc)(CN)2 molecules and density functional theory-based periodic calculations on the crystal. Our calculations confirm the ferromagnetic nature of the π-d interaction, with a coupling constant as large as Jπd /kB = 570 K, in excellent agreement with the experiments, and the presence of intermolecular antiferromagnetic interactions driven by the π-π overlap of neighboring phthalocyaninato molecules. The analysis of the wave function of the ground state of the Fe(Pc)(CN)2 molecule provides the clues of the origin of this giant ferromagnetic π-d interaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app