Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Control of Amphiphile Self-Assembly via Bioinspired Metal Ion Coordination.

Inspired by marine siderophores that exhibit a morphological shift upon metal coordination, hybrid peptide-polymer conjugates that assemble into different morphologies based on the nature of the metal ion coordination have been designed. Coupling of a peptide chelator, hexahistidine, with hydrophobic oligostyrene allows a modular strategy to be established for the efficient synthesis and purification of these tunable amphiphiles (oSt(His)6 ). Remarkably, in the presence of different divalent transition metal ions (Mn, Co, Ni, Cu, Zn, and Cd) a variety of morphologies were observed. Zinc(II), cobalt(II), and copper(II) led to aggregated micelles. Nickel(II) and cadmium(II) produced micelles, and multilamellar vesicles were obtained in the presence of manganese(II). This work highlights the significant potential for transition metal ion coordination as a tool for directing the assembly of synthetic nanomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app