Add like
Add dislike
Add to saved papers

Hemodynamic characteristics of hyperplastic remodeling lesions in cerebral aneurysms.

BACKGROUND & PURPOSE: Hyperplastic remodeling (HR) lesions are sometimes found on cerebral aneurysm walls. Atherosclerosis is the results of HR, which may cause an adverse effect on surgical treatment for cerebral aneurysms. Previous studies have demonstrated that atherosclerotic changes had a correlation with certain hemodynamic characteristics. Therefore, we investigated local hemodynamic characteristics of HR lesions of cerebral aneurysms using computational fluid dynamics (CFD).

METHODS: Twenty-four cerebral aneurysms were investigated using CFD and intraoperative video recordings. HR lesions and red walls were confirmed on the intraoperative images, and the qualification points were determined on the center of the HR lesions and the red walls. The qualification points were set on the virtual operative images for evaluation of wall shear stress (WSS), normalized WSS (NWSS), oscillatory shear index (OSI), relative residence time (RRT), and aneurysm formation indicator (AFI). These hemodynamic parameters at the qualification points were compared between HR lesions and red walls.

RESULTS: HR lesions had lower NWSS, lower AFI, higher OSI and prolonged RRT compared with red walls. From analysis of the receiver-operating characteristic curve for hemodynamic parameters, OSI was the most optimal hemodynamic parameter to predict HR lesions (area under the curve, 0.745; 95% confidence interval, 0.603-0.887; cutoff value, 0.00917; sensitivity, 0.643; specificity, 0.893; P<0.01). With multivariate logistic regression analyses using stepwise method, NWSS was significantly associated with the HR lesions.

CONCLUSIONS: Although low NWSS was independently associated with HR lesions, OSI is the most valuable hemodynamic parameter to distinguish HR lesions from red walls.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app