Add like
Add dislike
Add to saved papers

Localized Fe(II)-Induced Cytotoxic Reactive Oxygen Species Generating Nanosystem for Enhanced Anticancer Therapy.

The anticancer therapy on the basis of reactive oxygen species (ROS)-mediated cellular apoptosis has achieved great progress. However, this kind of theraputic strategy still faces some challenges such as light, photosensitizer and oxygen (O2 ) dependence. In this article, a ROS-mediated anticancer therapy independent of light, photosensitizer and oxygen was established based on a Fe2+ -induced ROS-generating nanosystem. First, artemisinin (ART) was loaded in porous magnetic supraparticles (MSP) by a nanodeposition method. Then, the poly(aspartic acid)-based polymer, which consisted of dopamine, indocyanine green, and polyethylene glycol side chain, was coated onto the surface of ART-loaded MSP. When the nanoparticles entered into cancer cells, a reaction of Fe2+ -mediated cleavage of the endoperoxide bridge contained in ART occurred and subsequent a large amount of ROS was generated. Moreover, a NIR light was used to effectively increase the local temperature of tumor in virtue of the superior photothermal effects of MSP, which enabled us to accelerate the ROS generation and achieved an enhanced ROS yield. The newly developed nanodrug system displayed a high level of intracellular ROS generation, leading to the desired killing efficacy against malignant cells and solid tumor. This smart nanosystem holds great potential to overcome the existing barrier in PDT and opens a promising avenue for anticancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app