JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deficiency of primary cilia in kidney epithelial cells induces epithelial to mesenchymal transition.

Primary cilium is a microtubule-based non-motile organelle that plays critical roles in kidney pathophysiology. Our previous studies revealed that the lengths of primary cilia decreased upon renal ischemia/reperfusion injury and oxidative stress, and restored with recovery. Here, we tested the hypothesis that lack of primary cilium causes epithelial to mesenchymal transition (EMT) of kidney tubule cells. We investigated the alteration of length of primary cilia in TGF-β-induced EMT via visualization of primary cilia by fluorescence staining against acetylated α-tubulin. EMT was determined by measuring mesenchymal protein expression using quantitative PCR and indirect fluorescence staining. As a result, TGF-β treatment decreased ciliary length along with EMT. To test whether defect of primary cilia trigger onset of EMT, cilia formation was disturbed by knock down of ciliary protein using siRNA along with/without TGF-β treatment. Knock down of Arl13b and Ift20 reduced cilia elongation and increased expression of EMT markers such as fibronectin, α-SMA, and collagen III. TGF-β-induced EMT was greater as well in Arl13b and Ift20-knock down cells compared to control cells. Taken together, deficiency of primary cilia trigger EMT and exacerbates it under pro-fibrotic signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app