Add like
Add dislike
Add to saved papers

Improved quantitative fatty acid values with correction of T2 relaxation time in terminal methyl group: In vivo proton magnetic resonance spectroscopy at ultra high field in hepatic steatosis.

Proton magnetic resonance spectroscopy (MRS) with optimized relaxation time is an effective method to quantify hepatic fatty acid values and characterize steatosis. The aim of this study is to quantify the difference in hepatic lipid content with metabolic changes during the progression of steatosis by using localized MRS sequence with T2 relaxation time determination. Fatty liver disease was induced in C57BL/6N mice through a high-fat diet (HFD) of pellets containing 60% fat, 20% protein, and 20% carbohydrates. We used stimulated echo acquisition mode (repetition time: 3500 ms; mixing time: 10 ms; echo time: 20 ms) sequence. Using enhanced and mono exponential curve-fitting methods, the lipid relaxation time in mice was estimated at a fixed repetition time of 5000 ms and echo time ranging from 20 to 70 ms. The calculated lipid contents with incorrect and correct relaxation times were as follows: total saturated fatty acid (4.00 ± 2.90 vs 6.74 ± 2.25, p < 0.05 at week 0; 15.23 ± 9.94 vs 25.53 ± 10.49, p < 0.05 at week 4); total unsaturated fatty acid (0.40 ± 0.49 vs 0.56 ± 0.47, p < 0.05 at week 4; 0.33 ± 0.26 vs 0.60 ± 0.21, p < 0.01 at week 7); total unsaturated bond (0.48 ± 0.52 vs 1.05 ± 0.58, p < 0.05 at week 10). Furthermore, we determined that the correct relaxation times of triglycerides between 0 and 10 weeks were significantly altered in the resonances (∼2.03 ppm: 31.07 ± 1.00 vs 27.62 ± 1.20, p < 0.01; ∼2.25 ppm: 29.10 ± 1.52 vs 26.39 ± 1.08, p < 0.05; ∼2.78 ppm: 37.67 ± 2.92 vs 29.37 ± 2.64, p < 0.001). The work presented focused on the significance of the J-coupling effect. The selection of an appropriate relaxation time considering the J-coupling effect provides an effective method for quantifying lipid contents and characterizing hepatic steatosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app