Add like
Add dislike
Add to saved papers

High voltage fragmentation of composites from secondary raw materials - Potential and limitations.

Waste Management 2018 April
The comminution of composites for liberation of valuable components is a costly and energy-intensive process within the recycling of spent products. It therefore is continuously studied and optimized. In addition to conventional mechanical comminution innovative new principles for size reduction have been developed. One is the use of high voltage (HV) pulses, which is known to be a technology selectively liberating along phase boundaries. This technology offers the advantage of targeted liberation, preventing overgrinding of the material and thus improving the overall processing as well as product quality. In this study, the high voltage fragmentation of three different non-brittle composites (galvanized plastics, carbon fibre composites, electrode foils from Li-ion batteries) was investigated. The influence of pulse rate, number of pulses and filling level on the liberation and efficiency of comminution is discussed. Using the guideline VDI 2225 HV, fragmentation is compared to conventional mechanical comminution with respect to numerous criteria such as cost, throughput, energy consumption, availability and scalability. It was found that at current state of development, HV fragmentation cannot compete with mechanical comminution beyond laboratory scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app