Add like
Add dislike
Add to saved papers

Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles.

Ecological pressures and varied feeding behaviors in a multitude of organisms have necessitated the drive for adaptation. One such change is seen in the feeding appendages of stomatopods, a group of highly predatory marine crustaceans. Stomatopods include "spearers," who ambush and snare soft bodied prey, and "smashers," who bludgeon hard-shelled prey with a heavily mineralized club. The regional substructural complexity of the stomatopod dactyl club from the smashing predator Odontodactylus scyllarus represents a model system in the study of impact tolerant biominerals. The club consists of a highly mineralized impact region, a characteristic Bouligand architecture (common to arthropods), and a unique section of the club, the striated region, composed of highly aligned sheets of mineralized fibers. Detailed ultrastructural investigations of the striated region within O. scyllarus and a related species of spearing stomatopod, Lysiosquillina maculate show consistent organization of mineral and organic, but distinct differences in macro-scale architecture. Evidence is provided for the function and substructural exaptation of the striated region, which facilitated redeployment of a raptorial feeding appendage as a biological hammer. Moreover, given the need to accelerate underwater and "grab" or "smash" their prey, the spearer and smasher appendages are specifically designed with a significantly reduced drag force.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app