Add like
Add dislike
Add to saved papers

Edge orientation dependent nanoscale friction.

Nanoscale 2018 Februrary 2
Nanoscale friction is generally found to be a function of the contact area. However, little is known whether and how it is dependent on the contact area shape. In this study, based on molecular dynamics (MD) simulations about a rectangular graphene flake sliding on a diamond-supported graphene substrate, we show that the friction between the flake and the substrate is significantly dependent on the flake edge oriented perpendicular to the sliding direction, but less dependent on the edge along the sliding direction. As a result, the friction between the flake and the substrate is closely related to the aspect ratio of the flake. We propose a novel nanoscale friction formula for the translational motion of a rectangular slider. The simulation data fit the formula well and the effect of the aspect ratio on nanoscale friction can thus be efficiently captured. We discuss also the origin of the edge orientation dependent nanoscale friction. The present findings provide not only a preliminary evaluation of the contact area shape dependent nanoscale friction, but also a quite important guide for modeling the friction properties of nanodevices based on two-dimensional (2D) materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app