Add like
Add dislike
Add to saved papers

Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.

The performance of lead-halide perovskites in optoelectronic devices is due to a unique combination of factors, including highly efficient generation, transport, and collection of photogenerated charge carriers. The mechanism behind efficient charge generation in lead-halide perovskites is still largely unknown. Here, we investigate the factors that influence the exciton binding energy (Eb ) in a series of metal-halide perovskites using accurate first-principles calculations based on solution of the Bethe-Salpeter equation, coupled to ab initio molecular dynamics simulations. We find that Eb is strongly modulated by screening from low-energy phonons, which account for a factor ∼2 Eb reduction, while dynamic disorder and rotational motion of the organic cations play a minor role. We calculate Eb = 15 meV for MAPbI3 , in excellent agreement with recent experimental estimates. We then explore how different material combinations (e.g., replacing Pb → Pb:Sn→ Sn; and MA → FA → Cs) may lead to different Eb values and highlight the mechanisms underlying Eb tuning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app