Add like
Add dislike
Add to saved papers

Synthesis of Water-Soluble Antimony Sulfide Quantum Dots and Their Photoelectric Properties.

Antimony sulfide (Sb2 S3 ) has been applied in photoelectric devices for a long time. However, there was lack of information about Sb2 S3 quantum dots (QDs) because of the synthesis difficulties. To fill this vacancy, water-soluble Sb2 S3 QDs were prepared by hot injection using hexadecyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) mixture as anionic-cationic surfactant, alkanol amide (DEA) as stabilizer, and ethylenediaminetetraacetic acid (EDTA) as dispersant. Photoelectric properties including absorbing and emission were characterized by UV-Vis-IR spectrophotometer and photoluminescence (PL) spectroscopic technique. An intensive PL emission at 880 nm was found, indicating Sb2 S3 QDs have good prospects in near-infrared LED and near-infrared laser application. Sb2 S3 QD thin films were prepared by self-assembly growth and then annealed in argon or selenium vapor. Their band gaps (E g s) were calculated according to transmittance spectra. The E g of Sb2 S3 QD thin film has been found to be tunable from 1.82 to 1.09 eV via annealing or selenylation, demonstrating the good prospects in photovoltaic application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app