Add like
Add dislike
Add to saved papers

Size-dependent formation of membrane nanotubes: continuum modeling and molecular dynamics simulations.

Membrane nanotubes play important functional roles in numerous cell activities such as cellular transport and communication. By exerting an external pulling force over a finite region in a membrane patch, here we investigate the size dependence of the membrane nanotube formation under the continuum and atomistic modeling frameworks. It is shown that the membrane undergoes a discontinuous shape transition as the size of the pulling region and the membrane tension increase. A formula characterizing the nonlinear relationship between the maximum static pulling force and pulling size is identified. During the membrane extraction, lipids in the upper and lower leaflets exhibit different behaviors of structural rearrangements. Moreover, our computational simulations indicate that the steady state pulling force increases linearly with the pulling velocity as well as the size of the pulling region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app