Add like
Add dislike
Add to saved papers

Paternal easiRNAs regulate parental genome dosage in Arabidopsis.

Nature Genetics 2018 Februrary
The regulation of parental genome dosage is of fundamental importance in animals and plants, as exemplified by X-chromosome inactivation and dosage compensation. The 'triploid block' is a classic example of dosage regulation in plants that establishes a reproductive barrier between species differing in chromosome number1,2 . This barrier acts in the embryo-nourishing endosperm tissue and induces the abortion of hybrid seeds through a yet unknown mechanism 3 . Here we show that depletion of paternal epigenetically activated small interfering RNAs (easiRNAs) bypasses the triploid block in response to increased paternal ploidy in Arabidopsis thaliana. Paternal loss of the plant-specific RNA polymerase IV suppressed easiRNA formation and rescued triploid seeds by restoring small-RNA-directed DNA methylation at transposable elements (TEs), correlating with reduced expression of paternally expressed imprinted genes (PEGs). Our data suggest that easiRNAs form a quantitative signal for paternal chromosome number and that their balanced dosage is required for post-fertilization genome stability and seed viability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app