Add like
Add dislike
Add to saved papers

Microstructures and performances of pegylated polysulfone membranes from an in situ synthesized solution via vapor induced phase separation approach.

In situ pegylated (PEGylated) microporous membranes have been extensively reported using poly(ethylene glycol) (PEG)-based polymers as blending additives. Alternatively, free standing PEGylated polysulfone (PSf) membranes with excellent hydrophilicity and antifouling ability were directly fabricated from polysulfone/poly(ethylene glycol) methyl ether methacrylate (PSf/PEGMA) solutions after in situ cross-linking polymerization without any treatment via vapor induced phase separation (VIPS) process for the first time. The microstructures and performances of the resulting membranes shifted regularly by adjusting exposure time of the liquid film in humid air. With increasing exposure time, plenty of worm-like networks formed and distributed on membrane surfaces, meanwhile cross-sectional morphology changed from asymmetric finger-like microporous structure to symmetric cellular-like structure, resulting in better mechanical stability. As the exposure time raised from 0 to 5 min, the surface coverage of carboxyl groups increased from ∼1.1 to 4.0 mol%, leading to the decrease in water contact angle from ∼63 to 27° and the increase in water flux from ∼110 to 512 L m-2  h-1 . In addition, at prolonged exposure time, increasing hydrophilic PEG chains migrated to membrane surfaced and repelled the adsorption and deposition of protein, resulting in better antifouling ability. The findings of this study offer a facile and high efficient strategy for flexible design and fabrication of the in situ PEGylated membranes with desirable structures and performances in large scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app