Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Determining variables that influence the phosphorus content of waste stabilization pond algae.

Water Research 2018 April 2
Waste stabilization ponds (WSP) are one of the most common forms of wastewater treatment for smaller communities globally, but have poor phosphorus removal. It is known that WSP algae can accumulate polyphosphate within their cells in excess of that needed for cell function. If polyphosphate accumulation could be triggered at the higher range of WSP cell concentrations, phosphorus removal from domestic wastewater could be significantly improved. However, this phenomenon is sporadic and still not fully understood. With a view of building a fundamental understanding to underpin the engineering of a new phosphorus removal process, this paper examines eight previously untested variables that may influence the cellular phosphorus content of WSP biomass. Although calcium, magnesium, and potassium are key constituents of polyphosphate granules, the concentrations tested were not limiting to polyphosphate accumulation. While literature also pointed to inoculum characteristics as potentially having an impact, no significance was found in this research. Conversely, three important new triggers where identified that significantly (90% confidence) affected the cellular phosphorus content of WSP biomass. An increase in cellular phosphorus content was triggered by decreasing the organic load, or allowing the pH to increase as compared to pH control. By contrast, the presence of mixing decreased the phosphorus content of the WSP biomass.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app