Add like
Add dislike
Add to saved papers

Combining allele frequency and tree-based approaches improves phylogeographic inference from natural history collections.

Molecular Ecology 2018 Februrary
Model selection approaches in phylogeography have allowed researchers to evaluate the support for competing demographic histories, which provides a mode of inference and a measure of uncertainty in understanding climatic and spatial influences on intraspecific diversity. Here, to rank all models in the comparison set and determine what proportion of the total support the top-ranked model garners, we conduct model selection using two analytical approaches-allele frequency-based, implemented in fastsimcoal2, and gene tree-based, implemented in phrapl. We then expand this model selection framework by including an assessment of absolute fit of the models to the data. For this, we utilize DNA isolated from existing natural history collections that span the distribution of red alder (Alnus rubra) in the Pacific Northwest of North America to generate genomic data for the evaluation of 13 demographic scenarios. The quality of DNA recovered from herbarium specimen leaf tissue was assessed for its utility and effectiveness in demographic model selection, specifically in the two approaches mentioned. We present strong support for the use of herbarium tissue in the generation of genomic DNA, albeit with the inclusion of additional quality control checks prior to library preparation and analyses with multiple approaches that incorporate various data. Analyses with allele frequency spectra and gene trees predominantly support A. rubra having experienced an ancient vicariance event with intermittent and frequent gene flow between the disjunct populations. Additionally, the data consistently fit the most frequently selected model, corroborating the model selection techniques. Finally, these results suggest that the A. rubra disjunct populations do not represent separate species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app