Add like
Add dislike
Add to saved papers

Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels.

Food & Function 2018 Februrary 22
High internal phase emulsions (HIPE) prepared using whey protein microgels (WPMs) as a surfactant were demonstrated to have substantially higher stability than HIPEs prepared using similar loadings of non-gelled whey protein isolate (WPI) or Tween 20. Microgel colloids were prepared from WPI solutions by heat treatment at 85 °C in a narrow pH range (5.8-6.0) to particle sizes of approximately 90, 160 and 350 nm in diameter. ζ-potentials of the WPM increased in negativity with decreasing particle size from -7.4 ± 2.5 down to -21.1 ± 0.9 at 90 nm. All WPMs conferred high stability to corn oil based HIPE when used as an emulsifier. Light microscopy and cryo-scanning electron microscopy showed that both increasing WPM concentration and decreasing WPM particle size produced increasingly smaller and more hexagonally shaped corn oil emulsion droplets; WPI and Tween 20 based HIPE droplets were generally smaller and spherical in shape. The HIPE (75% w/w corn oil) produced with 1% (w/w) WPM as an emulsifier showed stability through 6 months storage at 4 °C at all WPM sizes tested, while the HIPE prepared with 1% (w/w) WPI or Tween 20 exhibited significant creaming. WPM and WPI based HIPE both showed thermal stability at 70 °C and 95 °C while the heating of Tween 20 based HIPE resulted in droplet coalescence and oil-phase separation. HIPE production with WPMs significantly improved the viscoelastic properties of the HIPE, imparting drastic increases in yield stress, critical stress, complex modulus and elastic modulus over HIPE prepared with WPI or Tween 20. The more rigid rheology of the WPM HIPE indicated by these data is likely the primary mechanism driving the improved stability of these emulsions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app