Add like
Add dislike
Add to saved papers

Binding of Cu + and Cu 2+ with peptides: Peptides = oxytocin, Arg 8 -vasopressin, bradykinin, angiotensin-I, substance-P, somatostatin, and neurotensin.

The intrinsic binding ability of 7 natural peptides (oxytocin, arg8 -vasopressin, bradykinin, angiotensin-I, substance-P, somatostatin, and neurotensin) with copper in 2 different oxidation states (CuI/II ) derived from different Cu+/2+ precursor sources have been investigated for their charge-dependent binding characteristics. The peptide-CuI/II complexes, [M - (n-1)H + nCuI ] and [M - (2n-1)H + nCuII ], are prepared/generated by the reaction of peptides with CuI solution/Cu-target and CuSO4 solution and are analyzed by using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. The MALDI mass spectra of both [M - (n-1)H + nCuI ] and [M - (2n-1)H + nCuII ] complexes show no mass shift due to the loss of ─H atoms in the main chain ─NH of these peptides by Cu+ and Cu2+ deprotonation. The measured m/z value indicates the reduction of CuI/II oxidation state into Cu0 during MALDI processes. The number and relative abundance of Cu+ bound to the peptides are greater compared with the Cu2+ bound peptides. Oxytocin, arg8 -vasopressin, bradykinin, substance-P, and somatostatin show the binding of 5Cu+ , and angiotensin-I and neurotensin show the binding of 7Cu+ from both CuI and Cu targets, while bradykinin shows the binding of 2Cu2+ , oxytocin, arg8 -vasopressin, angiotensin-I, and substance-P; somatostatin shows the binding of 3Cu2+ ; and neurotensin shows 4Cu2+ binding. The binding of more Cu+ with these small peptides signifies that the bonding characteristics of both Cu+ and Cu2+ are different. The amino acid residues responsible for the binding of both Cu+ and Cu2+ in these peptides have been identified based on the density functional theory computed binding energy values of Cu+ and the fragment transformation method predicted binding preference of Cu2+ for individual amino acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app