Add like
Add dislike
Add to saved papers

Anharmonic vibrational spectra from double incremental potential energy and dipole surfaces.

We extend the fragmentation-based double incremental expansion in FALCON coordinates (DIF) and its linear-scaling analogue [C. König and O. Christiansen, J. Chem. Phys., 2016, 145, 064105] to dipole surfaces. Thereby, we enable the calculation of intensities in vibrational absorption spectra from these cost-efficient property surfaces. We validate the obtained potential energy and dipole surfaces by vibrational spectra calculations employing damped response theory for correlated vibrational coupled cluster wave functions. Our largest calculation on a hexa-phenyl includes all 180 vibrational degrees of freedom of the system, which illustrates the potential of both the DIF schemes for property surface generation and the use of damped response theory from high-dimensional correlated vibrational wave functions. Generally, we obtain good agreement between the spectra calculated from the DIF property surfaces and the non-fragmented analogues. Moreover, when adopting suitable electronic structure methods, good agreement with respect to the experiment can be obtained, as shown for the example of 5-methylfurfural and RI-MP2. In conclusion, our results illustrate that the presented scheme with linearly scaling surfaces enables high quality spectra, as long as reasonably sized fragments can be defined. With this work, we push the realistic limits of vibrational spectra calculations from vibrational wave function methods and accurate electronic structure calculations to significantly larger systems than currently accessible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app