EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Highly sensitive and reproducible non-enzymatic glucose sensor fabricated by drop-casting novel nanocomposite with 3D architecture and tailorable properties prepared in controllable way.

Talanta 2018 April 2
Novel nanocomposite has tailorable properties and ordered 3D architecture similar to the structure of materials prepared by electrodeposition which is convenient and efficient but the reproducibility is limited because of the uncontrollable preparation process, was scientifically synthetized in controllable way and used for non-enzymatic glucose sensor for the first time. Flower-like α-Ni(OH)2 with high specific surface areas and good anion transport ability benefited from its distinctive stacking faults and turbostratic disorder structure was synthesized through facile one-step hydrothermal method. Oversaturated gold nanoparticles (AuNPs) have been innovatively decorated on flower-like α-Ni(OH)2 to improve the electrical conductivity, in turn, AuNPs would possess the higher catalytic activity when supported on Ni(OH)2 , so the resultant AuNPs decorated α-Ni(OH)2 (AuNPs@α-Ni(OH)2 ) also has excellent synergistic catalytic effect and improved selectivity. On this basis, β-cyclodextrins functionalized reduced graphene oxide (β-rGO) with enhanced dispersivity was scientifically added at optimized proportion to reduce the interparticle resistance of AuNPs@α-Ni(OH)2 as 2D electron transport channels, and to improve film-forming ability of the obtained nanocomposite via forming stable 3D network structure. Non-enzymatic glucose sensor fabricated through drop-casting the prepared nanocomposite on glass carbon electrode has high sensitivity up to 559.314μAmM-1 cm-2 over the low concentration range and 327.199μAmM-1 cm-2 over the higher concentration range, comparable to the sensors modified by electrodeposition method, indicating that prepared nanocomposite with controlling nanoscale composition and architectures based on rational design is an effective strategy to construct electrochemical sensor with excellent performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app