Add like
Add dislike
Add to saved papers

The effects of dorso-lumbar motion restriction on EMG activity of selected muscles during running.

The effects of restricting dorso-lumbar spine mobility on electromyographic activity of the erector spinae, quadriceps femoris, hamstrings and gastrocnemius muscles in runners was investigated. Thermoplastic casting material was fashioned into a rigid orthosis and used to restrict spinal motion during running. Volunteers ran on a treadmill at 2.78 m/sec, under normal conditions and with spinal motion restricted. Surface electromyographic data was collected during both sets of trials. Normal electromyographic data was also compared with previous authors to determine similarity with their electromyographic data.

RESULTS: Casted running resulted in an increase in erector spinae (p < 0.01) and quadriceps femoris (p = 0.02) electromyography activity. Total stride time and swing time of gait were decreased during casted running (p < 0.01), indicating a shift towards shorter and thus more frequent steps to run the same distance. The normal electromyographic data collected was in agreement with previously reported work.

CONCLUSIONS: Neurological control over muscle and the fascia surrounding it is responsible for joint movement and load transfer. Experimentally restricting spinal motion during running demonstrated an increase in erector spinae and rectus femoris electromyographic activity. This lends support to the hypothesis that decreased spinal mobility may be a contributing factor to overuse muscle injuries in runners.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app