Add like
Add dislike
Add to saved papers

In Vivo Visualization of Tau Accumulation, Microglial Activation, and Brain Atrophy in a Mouse Model of Tauopathy rTg4510.

BACKGROUND: Tau imaging using PET is a promising tool for the diagnosis and evaluation of tau-related neurodegenerative disorders, but the relationship among PET-detectable tau, neuroinflammation, and neurodegeneration is not yet fully understood.

OBJECTIVE: We aimed to elucidate sequential changes in tau accumulation, neuroinflammation, and brain atrophy by PET and MRI in a tauopathy mouse model.

METHODS: rTg4510 transgenic (tg) mice expressing P301L mutated tau and non-tg mice were examined with brain MRI and PET imaging (analyzed numbers: tg = 17, non-tg = 13; age 2.5∼14 months). As PET probes, [11C]PBB3 (Pyridinyl-Butadienyl-Benzothiazole 3) and [11C]AC-5216 were used to visualize tau pathology and 18-kDa translocator protein (TSPO) neuroinflammation. Tau pathology and microglia activation were subsequently analyzed by histochemistry.

RESULTS: PET studies revealed age-dependent increases in [11C]PBB3 and [11C]AC-5216 signals, which were correlated with age-dependent volume reduction in the forebrain on MRI. However, the increase in [11C]PBB3 signals reached a plateau at age 7 months, and therefore its significant correlation with [11C]AC-5216 disappeared after age 7 months. In contrast, [11C]AC-5216 showed a strong correlation with both age and volume reduction until age 14 months. Histochemical analyses confirmed the relevance of pathological tau accumulation and elevated TSPO immunoreactivity in putative microglia.

CONCLUSION: Our results showed that tau accumulation is associated with neuroinflammation and brain atrophy in a tauopathy mouse model. The time-course of the [11C]PBB3- and TSPO-PET finding suggests that tau deposition triggers progressive neuroinflammation, and the sequential changes can be evaluated in vivo in mouse brains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app