Add like
Add dislike
Add to saved papers

Baicalin alleviates IL-1β-induced inflammatory injury via down-regulating miR-126 in chondrocytes.

Baicalin is a flavonoid extracted from Scutellaria baicalensis Georgi, with anti-inflammatory and anti-apoptotic activities. The objective of this study was to explore the effect and mechanism of baicalin on chondrocyte inflammatory response in OA. Different concentrations of IL-1β (0, 0.1, 2, 5 and 10 ng/mL) were used to simulate inflammatory injury in CHON-001 cells. The expression of miR-126 was altered by transfection with miR-126 mimic. Thereafter, cells were treated with baicalin, and cell viability, apoptosis, the expressions of apoptosis-related protein and pro-inflammatory factors were respectively detected using CCK-8 assay, flow cytometry, qRT-PCR and western blot analysis. We found that IL-1β induced a significantly inflammatory injury in CHON-001 cells. Baicalin alleviated IL-1β-induced inflammatory injury, as it increased cell viability, decreased cell apoptosis and repressed the production of IL-6, IL-8 and TNF-α. miR-126 was up-regulated by IL-1β treatment while was down-regulated by baicalin. More interestingly, the protective actions of baicalin on IL-1β-injured CHON-001 cells were partially eliminated by miR-126 overexpression. Further, NF-κB signaling pathway was activated by IL-1β, and deactivated by addition of baicalin. The deactivation of NF-κB signaling pathway induced by baicalin upon IL-1β exposure was recovered by miR-126 overexpression. In conclusion, this study demonstrated that baicalin protected CHON-001 cells against IL-1β-induced inflammatory injury possibly via down-regulation of miR-126 and thereby deactivation of NF-κB signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app