Add like
Add dislike
Add to saved papers

A novel strategy for the efficient removal of toxic cyanate by the combinatorial use of recombinant enzymes immobilized on aminosilane modified magnetic nanoparticles.

Cyanase detoxifies cyanate by transforming it to ammonia and carbon dioxide in a bicarbonate-dependent reaction, however, dependence on bicarbonate limits its utilization in large-scale applications. A novel strategy was therefore developed for overcoming this bottleneck by the combined application of cyanase (rTl-Cyn) and carbonic anhydrase (rTl-CA). The synergistic effect of rTl-Cyn and rTl-CA could reduce the dependence of bicarbonate by 80%, compared to using rTl-Cyn alone. Complete degradation of cyanate (4 mM) was achieved with buffered conditions and 85 ± 5% degradation with industrial wastewater sample, when 20 U of rTl-Cyn was applied. Furthermore, a similar percentage of degradation was achieved using 80% less bicarbonate, when rTl-Cyn and rTl-CA were used together under identical conditions. In addition, rTl-Cyn and rTl-CA were immobilized onto the magnetic nanoparticles and their catalytic activity, stability and reusability were also evaluated. This is the first report on the synergistic biocatalysis by rTl-Cyn and rTl-CA, for cyanate detoxification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app