Add like
Add dislike
Add to saved papers

Curcumin inhibits cardiac hypertrophy and improves cardiovascular function via enhanced Na + /Ca 2+ exchanger expression after transverse abdominal aortic constriction in rats.

BACKGROUND: This study tested the hypothesis that inhibition of cardiac hypertrophy and preservation of cardiac/endothelial function by the natural yellow pigment curcumin are associated with upregulated expression of Na+ /Ca2+ exchanger (NCX) after transverse aortic constriction (TAC).

METHODS: Male Wistar rats were subjected to TAC for 10 weeks and curcumin (50 mg/kg/day) was fed by gastric gavage during TAC. Expression of NCX and endothelial nitric oxide synthase (eNOS) was analyzed by Western blot and immunohistochemistry.

RESULTS: Compared with the animals in the TAC group, curcumin significantly increased the survival rate and reduced the ratio of heart or left ventricle (LV) to body weight and the cross sectional area of cardiomyocytes. In coincidence with improved LV systolic pressure and reduced LV end-diastolic pressure, curcumin significantly reduced LV end-systolic and diastolic diameter/dimension, and enhanced LV ejection fraction and LV fractional shortening as measured by echocardiography. Furthermore, endothelium-dependent relaxation of aortic rings in response to acetylcholine was significantly improved by curcumin. Along with these modifications, the expression and localization of NCX and eNOS in the myocardium and vascular endothelium were significantly upregulated by curcumin. The protective effect of curcumin on endothelium-dependent relaxation was partly blocked by pretreatment with the NCX inhibitor, KB-R7943.

CONCLUSIONS: These results demonstrate that inhibition of cardiac hypertrophy, improvement of cardiac systolic/diastolic function and preservation of vascular endothelium by curcumin might be associated with upregulated NCX expression level in response to increased afterload.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app